ÁLGEBRA DE GRACELI. QUÂNTICA TENSORIAL DIMENSIONAL RELATIVISTA.
MECÂNICA GRACELI GENERALIZADA - QUÂNTICA TENSORIAL DIMENSIONAL RELATIVISTA DE CAMPOS.
MECÃNICA GRACELI GERAL - QTDRC.
equação Graceli dimensional relativista tensorial quântica de campos G* = = [ / IFF ] * * = / G / .= / [DR] = = .= + G+ * * = = [ ] ω , , / T] / c [ [x,t] ] = |
//////
Teoria | Interação | mediador | Magnitude relativa | Comportamento | Faixa |
---|---|---|---|---|---|
Cromodinâmica | Força nuclear forte | Glúon | 1041 | 1/r7 | 1,4 × 10-15 m |
Eletrodinâmica | Força eletromagnética | Fóton | 1039 | 1/r2 | infinito |
Flavordinâmica | Força nuclear fraca | Bósons W e Z | 1029 | 1/r5 até 1/r7 | 10-18 m |
Geometrodinâmica | Força gravitacional | gráviton | 10 | 1/r2 | infinito |
G* = OPERADOR DE DIMENSÕES DE GRACELI.
DIMENSÕES DE GRACELI SÃO TODA FORMA DE TENSORES, ESTRUTURAS, ENERGIAS, ACOPLAMENTOS, , INTERAÇÕES DE CAMPOS E ENERGIAS, DISTRIBUIÇÕES ELETRÔNICAS, ESTADOS FÍSICOS, ESTADOS QUÂNTICOS, ESTADOS FÍSICOS DE ENERGIAS DE GRACELI, E OUTROS.
/
/ * *= = [ ] ω , , .=
MECÂNICA GRACELI GENERALIZADA - QUÂNTICA TENSORIAL DIMENSIONAL RELATIVISTA DE INTERAÇÕES DE CAMPOS. EM ;
MECÂNICA GRACELI REPRESENTADA POR TRANSFORMADA.
dd = dd [G] = DERIVADA DE DIMENSÕES DE GRACELI.
- [ G* /. ] [ [
G { f [dd]} ´[d] G* . / f [d] G* dd [G]
O ESTADO QUÂNTICO DE GRACELI
- [ G* /. ] [ [ ]
G* = DIMENSÕES DE GRACELI TAMBÉM ESTÁ RELACIONADO COM INTERAÇÕES DE ENERGIAS, QUÂNTICAS, RELATIVÍSTICAS, , E INTERAÇÕES DE CAMPOS.
o tensor energia-momento é aquele de um campo eletromagnético,
1 / * = = [ ] ω , , * * ψ [ / [ ] . .=
* = = [ ] , [ * * ψ [ ] / [ ] .= ] .=
Antes de se discutir sobre a partícula na caixa, é importante saber que para se resolver este problema, os conceitos e as aplicações dos postulados da mecânica quântica.
1º Postulado: a função de onda A função de onda contém toda as informações para determinar o estado de um sistema. Por isso, ela tem que ser unívoca, contínua e de derivadas contínuas.
2º Postulado: operadores Para toda e qualquer observável física há um operador linear e hermitiano.
- Teorema 1:os autovalores do operador hermitiano são reais.
- Teorema 2: as autofunções de um operador hermitiano são ortogonais.
3º Postulado: valores de observáveis os valores possíveis a ser obtidos por medidas de uma propriedade física observável , são os autovalores da equação de autovalor , em que é o operador que corresponde à propriedade observável e são as autofunções do operador .
4º Postulado: valor médio Sendo uma função de estado do sistema normalizada, logo o valor médio da observável no tempo é:
5º Postulado: evolução temporal O estado de um sistema quântico não perturbado tem sua evolução temporal dada por:
Comentários
Enviar um comentário